FMTINSTALL(2)FMTINSTALL(2)
NAME
fmtinstall, dofmt, dorfmt, fmtprint, fmtvprint, fmtrune, fmtstrcpy, fmtrunestrcpy, fmtfdinit, fmtfdflush, fmtstrinit, fmtstrflush, runefmtstrinit, runefmtstrflush, errfmt – support for user-defined print formats and output routines
SYNOPSIS
#include <u.h>
#include <libc.h>
typedef struct Fmt Fmt;
struct Fmt{
uchar runes; /* output buffer is runes or chars? */
void *start; /* of buffer */
void *to; /* current place in the buffer */
void *stop; /* end of the buffer; overwritten if flush fails */
int (*flush)(Fmt*); /* called when to == stop */
void *farg; /* to make flush a closure */
int nfmt; /* num chars formatted so far */
va_list args; /* args passed to dofmt */
int r; /* % format Rune */
int width;
int prec;
ulong flags;
};
unhandled troff command .sp
enum{
FmtWidth = 1,
FmtLeft = FmtWidth << 1,
FmtPrec = FmtLeft << 1,
FmtSharp = FmtPrec << 1,
FmtSpace = FmtSharp << 1,
FmtSign = FmtSpace << 1,
FmtZero = FmtSign << 1,
FmtUnsigned = FmtZero << 1,
FmtShort = FmtUnsigned << 1,
FmtLong = FmtShort << 1,
FmtVLong = FmtLong << 1,
FmtComma = FmtVLong << 1,
unhandled troff command .sp
FmtFlag = FmtComma << 1
};
unhandled troff command .sp
int fmtfdinit(Fmt *f, int fd, char *buf, int nbuf);
int fmtfdflush(Fmt *f);
int fmtstrinit(Fmt *f);
char* fmtstrflush(Fmt *f);
int runefmtstrinit(Fmt *f);
Rune* runefmtstrflush(Fmt *f);
unhandled troff command .sp
int fmtinstall(int c, int (*fn)(Fmt*));
int dofmt(Fmt *f, char *fmt);
int dorfmt(Fmt*, Rune *fmt);
int fmtprint(Fmt *f, char *fmt, ...);
int fmtvprint(Fmt *f, char *fmt, va_list v);
int fmtrune(Fmt *f, int r);
int fmtstrcpy(Fmt *f, char *s);
int fmtrunestrcpy(Fmt *f, Rune *s);
int errfmt(Fmt *f);
DESCRIPTION
The interface described here allows the construction of custom
print(2)
verbs and output routines.
In essence, they provide access to the workings of the formatted print code.
The
print(2)
suite maintains its state with a data structure called
Fmt.
A typical call to
print(2)
or its relatives initializes a
Fmt
structure, passes it to subsidiary routines to process the output,
and finishes by emitting any saved state recorded in the
Fmt.
The details of the
Fmt
are unimportant to outside users, except insofar as the general
design influences the interface.
The
Fmt
records whether the output is in runes or bytes,
the verb being processed, its precision and width,
and buffering parameters.
Most important, it also records a
flush
routine that the library will call if a buffer overflows.
When printing to a file descriptor, the flush routine will
emit saved characters and reset the buffer; when printing
to an allocated string, it will resize the string to receive more output.
The flush routine is nil when printing to fixed-size buffers.
User code need never provide a flush routine; this is done internally
by the library.
Custom output routines
To write a custom output routine, such as an error handler that
formats and prints custom error messages, the output sequence can be run
from outside the library using the routines described here.
There are two main cases: output to an open file descriptor
and output to a string.
To write to a file descriptor, call
fmtfdinit
to initialize the local
Fmt
structure
f,
giving the file descriptor
fd,
the buffer
buf,
and its size
nbuf.
Then call
fmtprint
or
fmtvprint
to generate the output.
These behave like
fprint
(see
print(2))
or
vfprint
except that the characters are buffered until
fmtfdflush
is called and the return value is either 0 or –1.
A typical example of this sequence appears in the Examples section.
The same basic sequence applies when outputting to an allocated string:
call
fmtstrinit
to initialize the
Fmt,
then call
fmtprint
and
fmtvprint
to generate the output.
Finally,
fmtstrflush
will return the allocated string, which should be freed after use.
To output to a rune string, use
runefmtstrinit
and
runefmtstrflush.
Regardless of the output style or type,
fmtprint
or
fmtvprint
generates the characters.
Custom format verbs
Fmtinstall
is used to install custom verbs and flags labeled by character
c,
which may be any non-zero Unicode character.
Fn
should be declared as
int fn(Fmt*)
Fp->r
is the flag or verb character to cause
fn
to be called.
In
fn,
fp->width,
fp->prec
are the width and precision, and
fp->flags
the decoded flags for the verb (see
print(2)
for a description of these items).
The standard flag values are:
FmtSign
(+),
FmtLeft
(-),
FmtSpace
(’ ’),
FmtSharp
(#),
FmtComma
(,),
FmtLong
(l),
FmtShort
(h),
FmtUnsigned
(u),
and
FmtVLong
(ll).
The flag bits
FmtWidth
and
FmtPrec
identify whether a width and precision were specified.
Fn
is passed a pointer to the
Fmt
structure recording the state of the output.
If
fp->r
is a verb (rather than a flag),
fn
should use
Fmt->args
to fetch its argument from the list,
then format it, and return zero.
If
fp->r
is a flag,
fn
should return one.
All interpretation of
fp->width,
fp->prec,
and
fp->flags
is left up to the conversion routine.
Fmtinstall
returns 0 if the installation succeeds, –1 if it fails.
Fmtprint
and
fmtvprint
may be called to
help prepare output in custom conversion routines.
However, these functions clear the width, precision, and flags.
Both functions return 0 for success and –1 for failure.
The functions
dofmt
and
dorfmt
are the underlying formatters; they
use the existing contents of
Fmt
and should be called only by sophisticated conversion routines.
These routines return the number of characters (bytes of UTF or runes)
produced.
Some internal functions may be useful to format primitive types.
They honor the width, precision and flags as described in
print(2).
Fmtrune
formats a single character
r.
Fmtstrcpy
formats a string
s;
fmtrunestrcpy
formats a rune string
s.
Errfmt
formats the system error string.
All these routines return zero for successful execution.
Conversion routines that call these functions will work properly
regardless of whether the output is bytes or runes.
2c(1)
describes the C directive
#pragma
varargck
that can be used to provide type-checking for custom print verbs and output routines.
EXAMPLES
This function prints an error message with a variable
number of arguments and then quits.
Compared to the corresponding example in
print(2),
this version uses a smaller buffer, will never truncate
the output message, but might generate multiple
write
system calls to produce its output.
#pragma varargck argpos fatal 1
unhandled troff command .sp
void
fatal(char *fmt, ...)
{
Fmt f;
char buf[64];
va_list arg;
unhandled troff command .sp
fmtfdinit(&f, 1, buf, sizeof buf);
fmtprint(&f, "fatal: ");
va_start(arg, fmt);
fmtvprint(&f, fmt, arg);
va_end(arg);
fmtprint(&f, "\n");
fmtfdflush(&f);
exits("fatal error");
}
This example adds a verb to print complex numbers.
typedef struct {
double r, i;
} Complex;
unhandled troff command .sp
#pragma varargck type "X" Complex
unhandled troff command .sp
int
Xfmt(Fmt *f)
{
Complex c;
unhandled troff command .sp
c = va_arg(f->args, Complex);
return fmtprint(f, "(%g,%g)", c.r, c.i);
}
unhandled troff command .sp
main(...)
{
Complex x = (Complex){ 1.5, -2.3 };
unhandled troff command .sp
fmtinstall('X', Xfmt);
print("x = %X\n", x);
}
SOURCE
/sys/src/libc/fmt
SEE
print(2),
utf(6),
errstr(2)
DIAGNOSTICS
These routines return negative numbers or nil for errors and set
errstr.